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Abstract

Fiol Gonzélez, Sonia; Cortes Vieira Lopes, Hélio (Advisor); Freitas
Pereira de Almeida, Cassio (Co-Advisor). Heuristics for data
point selection for labeling in Semi-Supervised and Active
Learning contexts. Rio de Janeiro, 2021. 98p. Tese de Doutorado
— Departamento de Informatica, Pontificia Universidade Catolica
do Rio de Janeiro.

Supervised learning is, today, the branch of Machine Learning central
to most business disruption. The approach relies on having amounts of la-
beled data large enough to learn functions with the required approximation.
However, labeled data may be expensive, to obtain or to construct through
a labeling process. Semi-supervised learning (SSL) strives to label accurately
data from small amounts of labeled data and the use of unsupervised learning
techniques. One labeling technique is label propagation. We use specifically
the Consensus rate-based label propagation (CRLP) in this work. A consensus
function is central to the propagation. A possible consensus function is a co-
association matrix that estimates the probability of data points i and j belong
to the same group. In this work, we observe that the co-association matrix has
valuable information embedded in it. When no data is labeled, it is common to
choose with a uniform probability randomly, the data to manually label, from
which the propagation proceeds. This work addresses the problem of selecting
a fixed-size set of data points to label (manually), to improve the label pro-
pagation algorithm’s accuracy. Three selection techniques, based on stochastic
sampling principles, are proposed: Stratified Sampling (SP), Probability (P),
and Stratified Sampling - Probability (SSP). They are all based on the in-
formation embedded in the co-association matrix. Experiments were carried
out on 15 benchmark sets and showed exciting results. Not only because they
provide a more balanced selection when compared to a uniform random selec-
tion, but also improved the accuracy results of a label propagation method.
These strategies were also tested inside an active learning process in a different

context, also achieving good results.

Keywords
Data point selection; Co-association matrix; Label propagation; Semi-

supervised learning; Active learning.
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Resumo

Fiol Gonzalez, Sonia; Cortes Vieira Lopes, Hélio; Freitas Pereira
de Almeida, Cassio. Heuristicas para selecao de pontos
para serem anotados no contexto de Aprendizado Semi-
Supervisionado e Ativo. Rio de Janeiro, 2021. 98p. Tese de
Doutorado — Departamento de Informética, Pontificia Universidade
Catolica do Rio de Janeiro.

O aprendizado supervisionado €, hoje, o ramo do aprendizado de maquina
central para a maioria das inovagoes nos negbcios. A abordagem depende de
ter grandes quantidades de dados rotulados, suficiente para ajustar fungoes
com a precisdo necessaria. No entanto, pode ser caro obter dados rotulados
ou criar os rétulos através de um processo de anotacao. O aprendizado semi-
supervisionado (SSL) é usado para rotular com precisdo os dados a partir de
pequenas quantidades de dados rotulados utilizando técnicas de aprendizado
nao supervisionado. Uma técnica de rotulagem é a propagacao de rétulos.
Neste trabalho, usamos especificamente o algoritmo Consensus rate-based label
propagation (CRLP). Este algoritmo depende do uma fungao de consenso para
a propagacao. Uma possivel funcao de consenso é a matriz de co-associagao
que estima a probabilidade dos pontos 7 e j pertencem ao mesmo grupo.
Neste trabalho, observamos que a matriz de co-associacao contém informagoes
valiosas para tratar esse tipo de problema. Quando nenhum dado esta rotulado,
¢ comum escolher aleatoriamente, com probabilidade uniforme, os dados a
serem rotulados manualmente, a partir dos quais a propagacao procede. Este
trabalho aborda o problema de selecao de um conjunto de tamanho fixo de
dados para serem rotulados manualmente que propiciem uma melhor precisao
no algoritmo de propagacao de rotulos. Trés técnicas de selegao, baseadas
em principios de amostragem estocastica, sao propostas: Stratified Sampling
(SS), Probability (P), and Stratified Sampling - Probability (SSP). Eles sao
todos baseados nas informacdes embutidas na matriz de co-associagao. Os
experimentos foram realizados em 15 conjuntos de benchmarks e mostraram
resultados muito interessantes. Nao s6, porque eles fornecem uma sele¢ao
mais equilibrada quando comparados a uma selecdo aleatéria, mas também
melhoram os resultados de precisao na propagacao de rétulos. Em outro
contexto, essas estratégias também foram testadas dentro de um processo de

aprendizagem ativa, obtendo também bons resultados.

Palavras-chave
Selecao de pontos; Matriz de co-associagdo; Propagacao de rétulos;

Aprendizado semi-supervisionado; Aprendizado activo.
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1
Introduction

Machine Learning is playing an essential role in the transformation of industry
and society (Molnar, 2020). Supervised learning is today, the branch of
Machine Learning central to most business disruption. The approach relies
on having amounts of labeled data large enough to learn functions with the
required approximation. However, labeled data may be expensive to obtain or
to construct through a labeling process.

Within the area of unsupervised learning, researchers recognize ensemble
clustering as a useful technique (Huang et al., 2019). This technique aims to
combine multiple partitions (clustering results) of the same data set into a final
partition. One of its main steps is creating a consensus function that reflects
the similarity between two data points. An example of a consensus function
is the so-called Co-association Matrix (CM) (Fred and Jain, 2005), where the
position (7, j) contains the probability of the data point i and the data point
J be in the same group considering the multiple partitions.

Figure 1.1 shows an example of a CM and a Similarity Matrix (SM) for
the Wine dataset (Lichman et al., 2013) with three classes. Both matrices are
sorted by class. In the similarity matrix, the values are very similar, so it is
difficult to differentiate the blocks. In (Fiol-Gonzalez et al., 2019), the authors
define it as a block: “rectangular shape formed around the main diagonal in the
heat map containing the elements belonging to the same cluster” In the CM,
these blocks are better defined, identifying three groups with frequency values
closer to 1, although the center block seems more confusing. Both matrices
present regions of confusion, however, the CM has less noise than the SM, and
the CM matrix contains more valuable information about the dataset. So, it
is very evident that the CM has much information embedded in its content.
In this work, we will explore this fact.

The task of getting labeled data is expensive and time-consuming
(Berikov et al., 2017). It is possible to learn from data when one combines
unlabeled and a small amount of labeled data (Berikov et al., 2017). This
situation is precisely the Semi-Supervised Learning (SSL) area of study. SSL
algorithms have two premises: the first is that data points next to each other

commonly belong to the same class, and the second is that data points at
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Figure 1.1: Co-association matrix and Similarity matrix for the Wine dataset.
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the same structure (cluster) commonly belong to the same class (Zhou et al.,
2004a).

Label Propagation (LP) algorithms form a class of traditional algorithm
of this area, and they aim to propagate the known information of the annotated
data points to their neighbors iteratively until convergence (Zhu et al., 2003a;
Zhou et al., 2004a).

1.1
Motivation

LP algorithms still require labeled data. The labeled data selection is carried
out randomly in the literature, taking into account prior knowledge of the data
set classes (Zhu and Ghahramani, 2002; Zhu et al., 2003a; Zhou et al., 2004a;
Wang and Zhang, 2007; Yu and Kim, 2018). Given this premise, applying LP
algorithms to a real-life problem is complicated because the class to which
each point belongs is unknown. At most, it could be known how many classes/

groups the analyzed domain has.

1.2
Problem
This work addresses the problem of selecting a fixed-size set of data points to

label, aiming to improve the label propagation algorithm’s accuracy.

1.3
Goal

This work aims to improve the selection of the initial data point set. To

guide our work, based on our goal, we propose the following research questions:

— RQ1: How can we ensure that the data points class selection represents

the real class distribution?

— RQ2: Is it possible to build a data point selection strategy from the co-
association matrix to improve the accuracy of the Consensus Rate-based
Label Propagation (CRLP) method?

— RQ3: Within the Active Learning framework, is it possible to integrate

initial point selection strategies to improve classification accuracy?
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1.4
Methodology

To answer the research questions of this work, we adopt the following pro-
cedure. First, we reviewed the literature on Ensemble Clustering, Semi-
supervised learning, and Active Learning. In the Ensemble clustering area,
we specifically search how to obtain the consensus function through the co-
association matrix, while in the semi-supervised area, we search for label prop-
agation algorithms. In the Active Learning area, we explore the traditional
query systems. Finally, we search for papers merging previous areas. Based
on the literature review and the identified problem, we developed our pro-
posed solution that consists of three different data point selection strategies.
We validate our proposal through three quantitative experiments applied to
15 datasets from the literature. We show that the proposed solution improves
the classification of the CRLP algorithm. Figure 1.2 illustrates the sequence

of activities carried out in this work.

1.5
Contributions

We propose three data points selection strategies for labeling using stochastic
sampling principles based on a co-association matrix. This strategies are
Stratified Sampling selection strategy (SS), Probability Sampling selection
strategy (P) and Stratified Sampling Probability selection strategy (SSP). Our
strategies results, show an improvement in the classification results in semi-

supervised and active learning contexts.

1.6
Document organization

The remaining of this document is structured as follows: Chapter 2 briefly
presents important background concepts, and Chapter 3 describes the related
works on ensemble clustering algorithms, label propagation algorithms, and
ensemble clustering with label propagation algorithms. Chapter 5 presents the
proposal algorithms. Chapter 4 presents Stratified Sampling, Probability, and
Stratified Sampling - Probability strategies. Chapter 5 presents the proposal
algorithms. Chapter 6 describes some experiments in benchmark data sets.
Chapter 7 presents a study about the selection of Co-association matrix and

conclusions are given in Chapter 8.
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Proposed
Selection
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Literature
Review
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Probability
Strategy

Stratified Probability
Sampling Sampling
Strategy Strategy

Proposed
Algorithms

Experiments

Create the
Co-association
Matrix

Selection Strategies Selection Strategies Selection Strategies
study applied to CRLP applied to Active
algorithm study Learning study

- AL with Uncertainty

- AL with CM update

- AL with Uncertainty and
CM update

- with replacement - with replacement
- without replacement - without replacement

Figure 1.2: Activities carried out in this work. The main stages are in orange. In
light gray are the activities and experiments related to the selection strategies,
and the CM’s creation. Finally, dark gray activities are related to the label
propagation algorithm after applying the selection strategies and the active
learning process.
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2
Background

In this chapter, we present the main concepts and algorithms that support our
work. In the Section 2.1 we describe the main LP algorithms. In the Section 2.2
we present the fundamental ideas about AL and traditional Query Systems.

In the Section 2.3 we carry out a summary and further considerations.

2.1
Label Propagation Algorithm

Semi-supervised Learning (SSL) algorithms assume that nearby data points
belong to the same class and that similar data points also belong to the same
class Wang and Zhang (2007). SSL creates the model by joining the labeled and
unlabeled data (Settles, 2009). In algorithms based on graphs, the unlabeled
data points are classified by propagating the label through the data points. In
this work, we used the Consensus Rate Label Propagation (CRLP) algorithm
(Yu and Kim, 2018).

The CRLP algorithm aims to propagate the weighted graph labels
G =<V, E,CM > of V vertices and F edges, where the weight of the edges is
defined in the co-association matrix C'M. The algorithm contains three steps.
Firstly, the algorithm creates CM by combining multiple clustering results.
Secondly, It randomly selects a set of data points to be labeled and propagate
the label to the unlabeled data points with the information from CM. Finally,
the algorithm classifies new observations based on multiple clustering and
labels propagation results. CRLP algorithm selects a fixed number of data
points per class randomly (Yu and Kim, 2018).

Algorithm 1 shows how the classification process is carried out through
propagation. The algorithm receives as input parameters, dataset that repre-
sents the analyzed dataset, Y, that specifies the set of annotated data points,
B the specified number of partitions to obtain the CM, and a scalar « that
ranges in the interval [0,1) is a learning rate. We explain each step of the
algorithm in more detail below.

In the first step to creating CM, B partitions are obtained by randomly
varying the number of groups (line 5), always choosing half of the variables (line

6) and using the K-Means (line 7) as the clustering algorithm. The K; function
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Algorithm 1 Consensus rate-based label propagation (Yu and Kim, 2018)

1: procedure CRLP (dataset, Yy, B, «)

2 n < number of data points in dataset

3 p < number of attributes in dataset

4: while iin {0 .. B} do

5: k < random between {2..\/n}

6 w < random p/2 attributes from dataset

7 K; < K-Means(k, dataset|:, w))

8 end while

9 1 Zle(Ol) = Kz(0k>

0 otherwise

10: CM+ L3P I

1. Vee{l,.,N} CM[z,z] < 0.

12: Compute the diagonal degree matrix D by D;; < 3=, CM;;

13: Compute the normalized graph Laplacian L < D~'/2CMD~/?
14: Initialize Y (0) < Y

15: Iterate Y+ « o LY ® + (1 — )Y © until convergence to Y ()

(c0)

Lk _

argmazx Yi;
J
17: Finally, classify the labels of new observations with the smoothness
function obtain previously.
18: end procedure

16: Label data point dp; with

verify if a data point belongs to the ¢ cluster. The B partitions are summarized
in C'M on lines 9 and 10. Then, from the C'M and Y, the algorithm performs a
label propagation process to obtain a classification model. In the second step,
zero is assigned on the diagonal of the CM (line 11), the diagonal matrix is
computed from the C'M (line 12) and normalized using the Laplacian graph
(line 13). In each iteration (line 15), each data point receives the information
from its neighbors (LY ®) and also retains part of the initial information
(1 —a)Y®) depending on the a value. The o parameter specifies the relative
amount of information taken from the neighbors and retain from the initial
information. When the method converges (line 16), each data point in Y
contains the degree of belonging to each class. Each data point will receive
the class that contains the highest probability value. In step 3 (line 17), the
new observations (testing set) will be classified. Yu and Kim Yu and Kim
(2018) divide the dataset into training and testing, so it is necessary to create
a classification model using only the training set and then apply the created
model to the testing set. In our case, we did not perform this division of the
dataset because we use the general knowledge of the entire dataset.

From the CRLP algorithm, we used the first and second steps (lines 2 to
16) and included a data point selection strategy based on the CM. We have

chosen this LP algorithm to be the one to test our sampling strategies since it
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also uses the CM as a basis.

2.2
Active Learning Algorithms

Active Learning (AL) is a sub-area of Machine Learning. It is a framework
that allows you to automatically select the most informative data points to be
annotated manually (Yin et al., 2019). With this, the AL paradigm reduces
the time/effort /cost of annotation in the training dataset (Tomanek and Hahn,
2009; Settles, 2009). AL reduces the number of instances that must be labeled
to achieve reasonable accuracy. The objective is to maximize the classification’s
accuracy given a cost function where the cost is associated with the acquisition
or annotation of a data point (Aggarwal, 2015).

The framework has two main components, the Query System (QS) and
the Oracle. The Query System is in charge of exploring the data points and
returning those that are the most informative. It is considered an essential
task in the process of active learning (Yin et al., 2019). The Oracle returns the
annotation of each data point suggested by the QS.

In AL, there are three main types of working scenarios: Membership
Query Synthesis Based AL Scenario, Stream-Based AL Scenario, and Pool-
Based AL Scenario Kumar and Gupta (2020). The Pool-Based AL Scenario is
when the learner has access to the set of unlabeled data before starting the
learning process. The following process represents it. The stage receives a fixed
unlabeled data set, and in each process iteration, an instance is selected to be
annotated by the oracle. The oracle knows the actual label of this instance,
and a new model is generated based on all the annotated data. This process
repeats until it meets the stop conditions (Baram et al., 2004). This type of
scenario is the most common among literature papers. Figure 2.1 shows a
diagram representing the AL loop for this scenario. The Membership Query
Synthesis Based AL Scenario is also known as selective sampling. At each
stage, the learner generates an instance of the input data space and requests
its annotation from the oracle. This scenario is an example of Pool-Based AL,
where all data points in the input domain represent the pool. The Stream-
Based AL Scenario learner receives a stream of unlabeled data. In each trial,
we get an instance from the stream, and the learner decides whether to label it
down or not. For more information on the scenarios, see (Settles, 2009; Kumar
and Gupta, 2020) where the authors carry out an extensive review of the active
learning literature.

Every AL process starts from an initial set of annotated data points.

Next, we obtain a learning model from the previous set. Then this model
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Model learning
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Unlabeled
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Figure 2.1: Flow diagram of the Pool-Based AL Scenario (image taken and
adapted from (Kumar and Gupta, 2020)).

is used to evaluate the unlabeled data points that are in the pool. In the
Query System, we define the conditions for a data point to be selected. If the
data point selected from the unlabeled set does not meet the QS conditions,
it chooses another data point from the pool. Otherwise, the domain expert
labels the datapoint and adds to the set of labeled data points until it meets
a predefined stop condition or until the pool is empty.

Not all data points are equally informative. Therefore it is essential
to choose the most relevant data points through the query system. There
are several types of Query Systems to achieve this goal such as Uncertainty
Sampling, Query by Committee, Support Vector Machines (SVM) Based
Approach, density-weighted method, Expected error reduction, Variance re-
duction, and Expected model change. Depending on the type of query in-
stance, we can divide these strategies into three categories: informative-based,
representative-based, and the combination of the previous two (informative
and representative-based) (Kumar and Gupta, 2020). In (Kumar and Gupta,
2020), the authors present a well-structured QS hierarchy divided by scenario
type and task type.

Uncertainty Sampling is the most straightforward and widely used strat-
egy in the literature. It selects the data points with the highest uncertainty over
its annotation and generally uses probabilistic models to determine the low-

est certainty datapoints. Entropy commonly measures uncertainty. Query by
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Committee is a more theoretical approach that involves maintaining a commit-
tee of learning models. These models are trained with labeled data, and each
model votes on a candidate to be analyzed. Finally, we choose the data point
that generates the most significant discrepancy between the models. Support
Vector Machines (SVM) Based Approach uses the SVM model as the basis for
selecting the data points to be annotated. The SVM technique is known for
creating margins to separate training data. With these margins, it is possible
to select the unlabeled data points closest to the margins. The points closest to
the margins are the most ambiguous data points, and their annotation would
help create more accurate models. Expected model change selects the instance
that will generate the current model’s most significant change if its annotation
is known. This technique is common in gradient-based models because the im-
pact caused on the model is estimated through the gradient. Expected error
reduction aims to select the data point that most reduces the model error. In-
stead of measuring how the model varies (Expected model change), it reduces
the error of the change. This strategy is the most computationally expensive.
Variance reduction is also an approach to reduce generalized error indirectly
through minimization of the output variance. In some cases, this variance has
a closed-form solution. The main idea of the Density-weighted method is to
mix the most uncertain points with the most informative. The most informa-
tive data points are considered those found in dense or homogeneous areas
according to the distribution of the points (Settles, 2009; Kumar and Gupta,
2020).

Another possible classification of AL is given by the number of data
points selected at each moment. From this point of view, they are divided into
myopic active learning and batch active learning (Yang and Loog, 2019). A
QS algorithm is myopic active learning when, in each iteration, it selects only
one data point. Examples of this category are Uncertainty Sampling, Query
by Committee, Error reduction, to cite some. A QS algorithm is classified as
batch active learning when it simultaneously selects a group of data points
from the unlabeled pool data (Yang and Loog, 2019; Das et al., 2020).

2.3
Summary

In summary, Semi-supervised learning and Active learning address the same
problem but from different points of view. Semi-supervised Learning exploits
the knowledge that the model thinks it learned about the unlabeled data
(Settles, 2009). That is, the algorithm creates the model by joining the labeled
and unlabeled data. In algorithms based on graphs, the unlabeled data points
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are classified by propagating the label of the labeled data. Active learning is
a framework that explores unknown data points. The objective is to create a
learning model from the labeled data points (Settles, 2009). It has a mechanism
for selecting unlabeled data points through the query system. It obtains the real
classification through an oracle to later train the model again. In our case, we
combine both approaches. In other words, the model inside the active learning
loop is a semi-supervised method that receives both labeled and unlabeled
data.
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Related works

This chapter presents an overview of the current works in the literature related
to our work. Section 3.1 presents a literature review on Ensemble Clustering
methods for creating the Co-association matrix. Section 3.2 presents works that
combine Ensemble Clustering with Label Propagation while the section 3.3
combines Active Learning with Semi-supervised Learning. Finally section 3.4

we summarize the state of the art and complement it with our considerations.

3.1
Ensemble clustering

The ensemble clustering technique Strehl and Ghosh (2002); Fern and Brodley
(2003); Topchy et al. (2004); Fred and Jain (2005); Wang et al. (2009); Vega-
Pons and Ruiz-Shulcloper (2011); Xu and Tian (2015); Huang et al. (2015)
aims to combine multiple weak base clustering results into a final partition.
They all demonstrate that it is a relevant problem and present new upcoming
challenges. Therefore, it is necessary to solve a correspondence problem.

Different strategies generate ensemble clustering, such as applying differ-
ent clustering algorithms, using different initial parameters, or selecting a dif-
ferent subset of features. The primary step in this technique is to create a con-
sensus function. A particular type of consensus function is the Co-association
Matrix, also known as the Consensus Matrix.

There are several approaches to create the consensus function on cluster-
ing ensemble techniques. Among them, we could cite the co-association matrix.
For example, the Cluster-based Similarity Partitioning Algorithm (CSPA),
proposed in Strehl and Ghosh (2002), analyze element relationships to gen-
erate a co-association matrix, and finally, apply a clustering method. Another
approach based on the co-association technique is the Evidence Accumulation
matrix (EAC) method Fred and Jain (2005). The EAC applies Average Link
(EAC-AL) and Single Link (EAC-SL) to extract the consensus clustering from
a clustering ensemble. In Huang et al. (2015), the authors present an extension
of the EAC called Weighted Evidence Accumulation matrix (WEAC). This
extension penalizes low-quality clusters and assigns weights to each base clus-

tering to generate the consensus partition. lam-On et al. Tam-On et al. (2008)
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present a link-based method that enhances the co-association matrix by ad-
dressing the relationship between partitions. The authors applied a linked net-
work model and analyzed the similarity among clusters. The proposed method
was tested on ten datasets (real and artificial datasets) and three benchmark
measures. In Wang et al. (2009), the authors present the Probability Accumu-
lation (PA) method. The authors take into consideration the cluster sizes of
original clustering to generate a new correlation matrix. The Ensemble Cluster-
ing Matrix Completion (ECMC) method Yi et al. (2012) construct a partially
observed matrix where each entry has an uncertainty value associated. The al-
gorithm filters the most uncertain entries and then complete the matrix to fill
the unobserved data. The Robust Spectral Ensemble Clustering (RSEC) Tao
et al. (2016) captures various noise of the co-association matrix by applying
a low-rank constraint. The proposed work split the co-association matrix into
two matrices: a matrix with the underlying cluster structure and a matrix with
the noise. Finally, the author applied a spectral clustering algorithm to find the
final partition. Another strategy based on the ensemble-driven cluster uncer-
tainty estimation and local weighting co-association matrix was presented in
Huang et al. (2018). The authors introduce an ensemble-driven cluster validity
measure and use the entropy to calculate the cluster uncertainty. In Fiol-
Gonzalez et al. (2018), a novel committee-based clustering method was pro-
posed. The method contains three steps: Firstly, create the ensemble through
clustering and feature selection algorithms. Secondly, summarize the multiple
partitions into a co-association matrix taking into account each data point’s
silhouette coefficient on each based partition. Finally, it applies a clustering
method to generate the final partition. In (Huang et al., 2019), the authors
proposed the Ultra-Scalable Spectral Clustering (U-SPEC) and ultra-scalable
ensemble clustering (U-SENC). In U-SPEC, a hybrid representative selection
strategy and a fast approximation method for K -nearest representatives are
proposed to construct a sparse affinity sub-matrix. In Zhong et al. (2019),
the authors filter the co-association matrix to obtain more accurate clustering
results. The authors remove evidence with low occurrence frequency and use
normalized cut to generate multiple partitions. In He and Huang (2019), the
author presents a meta-Cluster based consensus cluster with local weighting
and random walking (MC3LR). The MC3LR constructs a similarity graph,
explores high order structural information, and estimates each base cluster-
ing’s reliability through the Ensemble-driven cluster index (ECI). All previous
related works focus on generating CM though different approaches. However,
there is still active research on new techniques.

We adopted the procedure used in (Yu and Kim, 2018) to obtain the
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CM. The authors created an ensemble with 100 members (partitions) by
using the K-means algorithm, varying the number of groups between 2 and
V/Nb.instances randomly, and selecting randomly Nb. Attributes /2 attributes.
The K-means algorithm is executed ten times to generate each member, and
the best result is chosen. The centroids are determined by using the K-
means++ algorithm.

The simulation matrix related to the member k, where k varies between

1 and 100, is defined using Equation 3-1.

Sl ) 1, if the ¢*" data point was in the same cluster that j** data point
kY]] =
0, otherwise

Finally, the co-association matrix is defined by the normalized sum c()? all>1
simulations as in Equation 3-2.
1 loo
CM = 100 ;; Sk (3-2)
As a result, the CM contains in the entry (7, j) the probability that the
elements dp; and dp; belong to the same cluster. Also, we have a square,

symmetric and normalized matrix.

3.2
Ensemble Clustering + Label Propagation

In (Zhu et al., 2003a) it is proposed a semi-supervised method based on
Gaussian random field model. This method creates a weighted graph where
the vertex represent the data points, and the edges represent the distances.
Therefore the authors use this graph to formulate the learning problem, and
it is closely related to Spectral Graph Theory, Random Walk, and Electric
Networks. This paper looks forward to combining labeled and unlabeled data
effectively. The author performs ten trials, and for each trial, the algorithm
selects between 20 and 100 random points, computes a weight matrix, and
propagate the labels. All the results in this paper lie on a single dataset
(MNIST). This paper relies on random algorithms to select the data point
to be labeled. The authors relate a 95% accuracy with 20 labeled data points.
However, the authors focus on two classes (1 and 2) out of ten, uses random
strategies to choose the labeled data points, and provides mean accuracy of all
results.

This article (De Sousa, 2015) proposes an overview of the Gaussian
Fields and Harmonic Functions (GFHF) algorithm, considering and answering

questions regarding the convergence analysis, scalability, active learning, its
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regularization framework, out-of-sample extension, and active learning. The
author highlights active learning technique’s relevance to take advantage of a
weighted graph generated from the dataset using the GFHF algorithm.

The authors in (Zhou et al., 2004a) state that the semi-supervised
learning focuses designing a sufficiently smooth classification function to adapt
itself according to the data points structured revealed by the labeled and
unlabeled data points. In this paper, the author presents a simple algorithm
to obtain this kind of objective. In this article, the authors use the error rate
metric. The authors were inspired by the Spreading Activation Network and
Diffusion Kernels. The algorithm’s core idea is to propagate the label to their
neighbors depending on certain conditions until a global stop condition is met.
The data points were represented in a similarity matrix. The experiments
were carried on three datasets. The first one was a toy dataset as a proof of
concept. The second dataset was a subset of the MNIST dataset. The authors
filter four classes [1,2,3 and 4] out of ten, summing up to 3874 data points.
The final reported result was the mean error over 100 trials, and the samples
to be labeled must have at least one member of each class. The third dataset
was a text classification (20-newsgroup) containing 3970 documents divided
into four classes. In conclusion, the authors demonstrate the effective use of
unlabeled data points in the used datasets.

In (Ovelgonne and Geyer-Schulz, 2012), the idea is to train several weak
graph clustering and then combine them to create a more robust clustering.
The authors combine multiple classifications and clustering results in order to
improve prediction accuracy.

In (Zhang et al., 2014), the authors combine multiple classifications
and clustering results in order to improve the prediction accuracy. Firstly,
the algorithm applies several clustering algorithms and combines the results
in a similarity graph. This graph can represent the internal data points
relation. Once the graph is built, the author applies Zhou’s semi-supervised
learning algorithm (Zhou et al., 2004a) and define a bipartite graph between
the labeled and unlabeled data points. This bipartite graph can modify the
label propagation step with an alpha trade-off parameter. The authors claim
that the proposed approach can improve the results over traditional semi-
supervised algorithms. The experiments were performed on three datasets.
For each dataset, the algorithm runs over 50 times on random partitions of the
data. The authors describe how the proposed algorithm obtains better results
than existing alternatives by incorporating portions of the propagated labeled
objects.

The authors in (Yu et al., 2016) propose a Semi-Supervised Classification
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using Multiple Clusterings (SSCMC). The algorithm creates a projection of the
original samples into random subspaces and applies the clustering algorithms
on the projected data points.

In (Yu and Kim, 2018), the authors propose the Consensus rate-based
label propagation algorithm. The algorithm creates a consensus matrix from
multiple clusterings. Then apply a Label Propagation method by selecting
random points to annotate. The propagation algorithm used is the LGC (Zhou
et al., 2004a) using the consensus matrix as a weighted matrix. In this work,
we used the CRLP algorithm because it is the only one that uses the CM.

The authors in (Berikov et al., 2017) proposed a semi-supervised clas-
sification using a combination of ensemble clustering and kernel-based learn-
ing. The algorithm has two steps. First, they create a weighted average co-
association matrix using multiple clusterings. Then, they use the labeled data
to contact a decision function.

The work (Forestier and Wemmert, 2016) focus on cases where the la-
beled data points are limited and introduces a method combining supervised
and unsupervised learning called Semi-supervised learning enhanced by mul-
tiple clusterings (SLEMC). This work aims to generate new variables used
to enrich the input data, generate clusterings on labeled and unlabeled data,
and group data points by maximizing intracluster similarity and intercluster
dissimilarity metrics. In having a labeled data point inside a cluster, all the
data points receive the same class. However, this is not guaranteed in real life.
Therefore, the authors applied combinations of multiple clusterings to avoid
this problem.

In (Livieris, 2019), the author presents a new semi-supervised method
based on an ensemble approach. Firstly, the author combines a set of
well-known individual predictors such as self-training, co-training, and tree-
training. The idea behind the scenes is to discover hidden information on
the unlabeled data points. Finally, a committed-based ensemble receives the
formerly algorithm’s outputs to generate a consensus through a maximum
probability-based voting scheme. The two primary steps are selection and com-
bination. The experiments were carried over 40 benchmark datasets and vary-
ing the training radius in 10%, 20%, 30%, and 40% number of examples. The
authors compare the performance against learning algorithms available in the
literature. The results of the new algorithm show an improvement compared
to traditional semi-supervised learning.

In (Kim and Cho, 2019), the authors demonstrate how the use of
semi-supervised learning techniques can strengthens the boundaries of the

decision algorithms. Moreover, the authors state that label propagation can
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effectively learn similar features intra-class. The authors use label propagation
and transductive support vector machine to label the unlabeled data points
and the Dempster-Shafer theory to determine whether a data point should be
annotated or not. During the experiments, the author labeled up to the 20%
of the data point of the Lending Club dataset. The authors conclude that the
proposed ensemble outperforms the traditional algorithm from the literature.

The paper (Berikov and Litvinenko, 2019) proposes a method combining
graph Laplacian regularization and cluster ensemble techniques. To reuse
memory and accelerate calculations, the author uses a low rank-decomposition

of the similarity matrix.

3.3
Active learning + SSL

The recent acceptance of combining semi-supervised learning and active learn-
ing is highlighted in (Yin et al., 2019). Several are the works that combine SSL
and AL in tiny contexts such as text classification (Zhu et al., 2003b), language
context (Tur et al., 2005; Tomanek and Hahn, 2009), image classification (Zhu
et al., 2003b; Zhou et al., 2004b; Long et al., 2008; Yang and Loog, 2019),
industrial context (Yin et al., 2019), among others.

In (Zhu et al., 2003b), the authors combine the Semi-supervised Learning
and the Active Learning paradigm. This effect can be achieved by combining
the Gaussian Random Fields and Harmonic Energy Minimization Function.
The idea is to apply a greedy strategy to select the unlabeled data points
which minimize the estimated expected classification error (risk) of a har-
monic energy minimization function. The authors demonstrate how the pro-
posed framework leads to a more accurate selection of unlabeled data points
than previous strategies, such as selecting the data points with maximum label
ambiguity. The experiments were performed into synthetic datasets. Also, the
algorithm was tested in the handwritten digits recognition and the text clas-
sification problems. The results show the proposed active learning algorithm’s
effectiveness compared to the SVM Most Uncertain and Most Uncertain Query.

The authors in (Zhou et al., 2004b) propose the Semi-supervised Active
Image Retrieval (Ssair) Algorithm. This algorithm combines semi-supervised
learning and the active learning mechanism. The goal is to exploit the un-
derlying structure of the unlabeled data points to improve image retrieval
performance. The algorithm uses the labeled data points to create two dif-
ferent learners. Each learner produced a confidence rank for each image, and
the most relevant /irrelevant images are labeled and used as training examples

in the next algorithm step. The experiments were performed in a 2000 image
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sample from the COREL database. There were selected 100 images divided
into 20 classes. According to the authors, the results show how the proposed
algorithm improves the retrieval performance.

In (Tur et al., 2005), the authors propose two algorithms for spoken
language understanding inspired by certainty-based active learning. The first
algorithm increases the training dataset with automatically labeled classes
for the unlabeled instances, while the second one increases the dataset with
a weighted combination of human-labeled classes and automatically labeled
classes. These algorithms’ goal is to reduce the amount of data that need
to be labeled and take advantage of the already labeled instances to predict
the unlabeled data points. These algorithms use a Boosting strategy to learn
the labeled data points classification and reflect on the unlabeled ones. The
authors state that this algorithm is prepared to receive a constant data flow
instead of a fixed length dataset. According to the authors, this behavior better
reflects a real-world scenario on the spoken language understanding problem.
The experiments were carried out on the “How may I help you?” dataset from
AT&T. The training process was performed ten times with different training
and testing sets ,and finally, the authors reported the mean classification
error rate. The authors demonstrate that the combined use of semi-supervised
learning and active learning can speed up the learned model’s convergence
while bypassing inaccurate problems caused by unbalanced data.

In (Long et al., 2008), the authors combine Semi-supervised learning and
Active Leaning techniques. They rely on a pool-based active learning approach.
This pool-based approach is commonly composed of a learning strategy and a
sampling strategy. The authors used graph-based label propagation as the base
classifier and used the expected data points entropy to select the data points
to be labeled. The sampling strategy tends to select the data point with the
maximum expected entropy reduction. The experiments were performed in four
datasets, and each dataset was randomly divided into ten equal partitions. One
set was used as a testing set, and the remaining as the training sets in each turn,
. The training set was also divided into labeled and unlabeled. The labeled data
points set starts with one randomly selected instance, and in each iteration,
the algorithm sample a single instance to be labeled according to a myopic
strategy. The results illustrate a positive balance compared to other sampling
methods, such as Random Sampling, Query-by-Committee, and Uncertainty
sampling. Finally, the authors claim that the proposed algorithm can handle
multi-class learning problems.

In (Tomanek and Hahn, 2009), the authors present and active learn-

ing approach where the human annotator has to label the most uncertain
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subsequences among the selected sequence. To achieve this goal, the authors
combine active learning and self-learning in a semi-supervised algorithm. This
algorithm uses the Conditional Random Fields as the base sequence classi-
fier and bootstrapping to avoid poor human annotations on critical regions.
The experiments were performed in two different domains: the general lan-
guage newspaper domain and the sub-language biology domain. The results
illustrate how the proposed approach can definitively outperform supervised
learning approaches. The authors conclude that the algorithm can effectively
present sentences useful to the learning task.

In (Park and Kim, 2019), the authors present an active semi-supervised
learning algorithm through the combination of multiple sample criteria into
a Laplacian kernel. Also, the authors take advantage of the Self-Organizing
Map (SOM) in a clustering process. This clustering process provides useful
information such as the centroids, the number of labeled samples in each group,
and the clusters’ size. The idea of the algorithm is to minimize the variance in
a Laplacian regularized least squares regression model. The experiments were
performed in 10 datasets selected from the UCI online repository. The results
show the effectiveness of the proposed algorithm.

The paper (Yin et al., 2019) proposes an active semi-supervised learning
method based on the Fisher Discriminant Analysis (ALsemiFDA) model
applied to the industrial fault classification task. This algorithm received
labeled and unlabeled data points. Firstly, one has to train an FDA with the
labeled data points and predict the unlabeled data points after that. Secondly,
the algorithm calculated the predicted data points’s entropy and labeled the
maximum entropy instance with domain experts. Finally, the human-labeled
data points are switched into the labeled set and repeat the process until the
stop conditions meet.

The authors use four UCI datasets and the Tennessee Eastman Process
dataset. The UIC datasets were divided into 70%-30% for training and testing.
The training set was divided into 30%-70% for labeled and unlabeled. The
Tennessee Eastman Process dataset was divided the same way with an 80%-
20% rate. The author concludes that ALsemiFDA algorithm’s application on
the previously mentioned datasets visually proves the correctness of the idea

and the algorithm’s effectiveness.
3.4
Discussion

In these label propagation and active learning papers, the selection of data

points to be labeled is carried out randomly and maintaining a balance between
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the classes (Zhu and Ghahramani, 2002; Zhu et al., 2003a; Zhou et al., 2004a;
Wang and Zhang, 2007; Yu and Kim, 2018; Yang and Loog, 2019). In some
cases, they select a fixed number of data points per class randomly (Yu and
Kim, 2018). If the selection does not have all the classes representatives, the
selection process continues until all classes have at least one representative
data point (Zhu and Ghahramani, 2002; Zhu et al., 2003a; Zhou et al., 2004a).

In the recent active learning article (Yang and Loog, 2019), the problem
of selecting the initial set of labeled data points is very well summarized. It
also states that this selection of data points has not been widely addressed in
the literature, adopting the same random strategy commonly used, selecting a
fixed number of elements per class like in (Baram et al., 2004).

Making the selection is only possible in benchmark data sets, but not
in data sets corresponding to real-life problems. So, our work comes to give a
contribution to this task. Also, it has a simulation process, which presupposes
that the dataset is annotated. These simulations of propagation algorithms
have an good mean accuracy, which in most cases is the metric used to report
the results (Yu et al., 2016; Zhang et al., 2014; Yu and Kim, 2018; Livieris,
2019; Kim and Cho, 2019; Zhang et al., 2020). However, the results do not
show a dispersion measure, and the comparison is made only with the central
value.

We propose data point selection strategies to substitute the random
selection to spend as few resources as possible on the data annotation task. In
the next chapter, we will present three heuristics based on stochastic sampling

from the co-association matrix’s implicit knowledge.
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4
Selection strategies for labeling

In this chapter, we present three different strategies for selecting data points to
be labeled. They are based on the information that is embedded in the CM. In
Section 4.1, we present the Stratified sampling strategy that randomly selects
data points with uniform probability based on their importance. In Section 4.2,
we present the Probability sampling strategy that randomly selects data points
with a probability calculated from the CM information. Section 4.3 presents
the Stratified Sampling with Probability selection strategy that combines the

two previous strategies.

4.1
Stratified sampling strategy

The Stratified sampling strategy (SS) selects data points based on their
importance in a stratified sampling process, which is a method of sampling
from a set that can be partitioned into subsets. The idea of stratification is
to get data points that have different connection levels in the CM. To do so,
we first compute the data point importance I(dp;), which is given by the sum
of all the probabilities related to the i'* data point in the CM. Then, it is
normalized by the total sum of the CM. In resume, the data point importance

is defined in Equation 4-1 as follows:
" L CMli,j
Idn) = ot (1)
k=1 Zj:l CM[k, j]
where n is the number of data points and Vz € {1,..,n} CM|z,z] = 0.

The diagram in Figure 4.1 presents an overview of the proposed method.
With the importance of each data point in hand, we put them in a vector,
named [0, according to decreasing order of importance. In a sequence, we
divide this ordered importance vector into equal-sized strata to have the chance
of choice data points from different importance regions. The number of strata
is always equal to nr, the number of data points to be selected. At this step,
a data point is randomly selected in each stratum. Therefore, we will have nr
selected data points with different degrees of importance. This strategy can be
considered a non-deterministic method based on stratified sampling.

Figure 4.2 shows an example of how the initial data points are selected
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e )

Dp = {dp,,dp>, ..., dp,} nr
Imp = {/(dp),Vdp € Dp}
10 = sort(Imp)
L
i=0 ( i=1 i=nr—1
[0, [ £]) [l 1.212]) [t = DL, 7]
[...)
min = 0, min = | %], min = (nr = D%,
max = || max = 2| - | max =n
ro = [(max — min)U(0, 1) + min] ri = [(max < min)U(0, 1) + min| - « - Faret = [(max X min)U(0, 1) + min|
sdp1 =10[ro] sdpy =101[r] cen sdpny =10 [Fay-1]

selected Dp = {sdp,,sdpa,...,sdpp}

Figure 4.1: Stratified Sampling strategy diagram to define the initial labeled

data points.
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Dp = {dp:.dp>,dp3,dps,dps,dps,dp7}
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sdp1 =10[ro] sdpy =10[r]
sdpy =10 [1] sdpy =10 [6]
sdp; =2 sdp, =17

v
selected Dp index = {2,7}

Figure 4.2: Example of Stratified Sampling strategy in a toy dataset.
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in a toy dataset. In this example, we have a dataset extracted from (Yu and
Kim, 2018). It is made up of seven data points and two classes. Data points
dpy,dps,dps and dps belong to the first class (class #1) and data points
dps,dps and dp; belong to the second class (class #2). In addition, there
is a co-association matrix showing, for example, that data points dp; and
dpo have the strongest connections, while data points dp3 and dp; have the
weakest connections. It could be considered that strong relationships have
a similarity value closer to one, and weak relationships have a similarity
value closer to zero. The idea is to obtain two representative data points
(nr = 2). Ideally, one data point is selected from each class to ensure that the
propagation process is carried out from a balanced labeled subset. Initially,
the importance of each data point is calculated, being this [0.145, 0.161, 0.177,
0.161, 0.113, 0.129, 0.113] and this vector is sorted in decreasing order 10 =
[dps, dps, dpy, dpy, dpg, dps, dpz]. Then the vector 10 is divided into two strata.
The first stratum ([dps, dps, dps]) comprises the data points that have the
highest importance values, and all belong to class #1. The second stratum
([dp1, dps, dps, dp7]) have data points from both classes. One data point from
each stratum is chosen randomly. The dp, data point was sorted from the first
stratum, while data point dp; was extracted from the second stratum.

CM is fundamental in our strategy. In such a way, if this matrix has
noise, the importance indicator will be affected, and this is a limitation that
must be addressed. Figure 4.3 illustrates an example of this problem. The
dataset comprises six data points like the connections shown in the CM. The
importance value for each data point is also observed. In the case of the data
point dpg, it has a weak connection with other data points. In other words,
in the multiple partitions made, the dpg was always partitioned with different
data points. The data points dps and dps are the ones with the strongest
connections and, therefore, a greater importance.

In the example, it is possible to notice that the importance of the dpg
data point is equal to the importance of the dp, and dps. However, dpg is an
uncertain data point.

There are several different situations with the same importance problem.
Data points changing groups in the multiple partitions are candidates to be
defined as confusing or uncertain data points. On the contrary, data points
that were together most of the time are candidates to be defined as clear or

certain data points.
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Co-association matrix

Data point
dpt dp2 dp3 dp4 dps dp6

dp3 1

dp1 0

dp2 4

dp2
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dp6 - 0.208

Data point

p4

dp5 1 0.208

dp5

dp4 1 0.208

0.00 0.04 0.08 0.12 0.16
Importance value

Figure 4.3: Example of Stratified Sampling limitation.

4.2
Probability sampling strategy

The Probability sampling strategy (P) defines a probability model that will be
used to select a data point on the dataset to label. The idea is to select data
points that are in distant regions due to the premise that differently labeled
data points are distant. Once one data point is selected, the probability of the
other data points to be selected will be proportional to the distance to this
one. To define the distance between two data points, we transform the CM

into a distance matrix using the Equation 4-2.

dm;;=1—CM,,. (4-2)
where ¢ and j are data points.

The diagram in Figure 4.4 shows the main steps of the Probability
strategy. Initially, the Probability algorithm receives the input parameters:
the data points, the number of desired representatives, and the CM. From the
CM, we compute the matrix of distances between each pair of data points,
the initial vector of probabilities that starts with equal probability (1/N) for
each data point, where N represents the total number of data points. Next, the
empty set selected Dp is created to store the data points that will be randomly
selected. The second block corresponds to the selection of points. Then we
choose a data point and make a random selection with the probability stored
in current_probability. The selected data point is removed from the data point
list to not be selected again in the next iterations. Furthermore, the selected
data point is added to the set selected Dp. Then the probabilities update step

is performed. In this step the selected points are used to update the vector of
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Dp = {dpy.dp>, ..., dp,} nr

\ 4
dm=1-CM

current_probability = {1/N,...1/N} where |current_probability| = N
selected Dp = {}

y

" current dpoint = random(Dp, current_probability)

c Dp = Dp — {current dpoint}

=~ selected Dp = selected Dp U {current dpoint}

=

i)

o ‘

(O]

ﬁ current_dm = dm[selected Dp, Dp]

£ current_probability = l|c=”1r rent_dml o prent_dmli, ]

current_probability

current_probablllty = > current_probability

selected Dp = {sdpi,sdp»,...,sdp, }

Figure 4.4: Probability sampling strategy diagram to define the initial labeled
data points.
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current__probability following the Equation 4-3. In this step, the main idea is to
filter the distance matrix by the selected data points and apply a multiplication
per column to obtain the probability that the next data point will be drawn
and normalize this probability. These last two steps (selection and update)
are performed until the desired nr data points have been selected. Finally, we

return the set selected Dp with the selected data points.

|current__dm)|
current_probability = [  current_dmli, ], (4-3)
i=1
when current__dm = dm|[selected Dp, Dp].

Dp = {dpi.dp>,dps,dps.dps,dps.dp7 }

\

current_probability = {0.14,0.14,0.14,0.14,0.14,0.14,0.14}
selected Dp = {}
A

Y
nr=1 : nr=2
current dpoint = dp, current dpoint = dps
Dp = {dp>,dps3,dps,dps,dps,dp7 } Dp = {dp>,dps,dps,dps,dp7}
selected Dp = {dp; } selected Dp = {dp;.dps}

02 04 06 1 1
current_dm = [0.2,0.4,0.6, 1.0, 1.0, 1.0] 1 08 04 06 08

current_probability = [0.2,0.4,0.6,1.0, 1.0, 1.0] current_probability = [0.20,0.32,0.24, 0.60, 0.80]
current_probability = [0.05,0.10,0.14,0.24,0.24,0.24] current_probability = [0.09,0.15,0.11,0.28,0.37]

i J
v
selected Dp = {dp;,dps}

current_dm = [

Figure 4.5: Example of Probability sampling strategy in a toy dataset.

Figure 4.5 shows an example using the Probability strategy in the same
toy dataset. In this dm, for example, we see that dp; has a maximum distance
from the data points dps, dpg, and dp;. As this algorithm prioritizes data points
that are distant in the random selection, the data points dp1, dps, dpe and dp7
are strong candidates to be selected. Next, the probability is initialized for all
data points, this is 1/7 = 0.14 approximately, and the empty set is created
where the selected data points will be stored.

When the number of representatives is 1 (nr = 1), a data point with
probability 0.14 is randomly drawn for all data points. As a result, dp; was

obtained, added to the resulting set, and then eliminated from the data
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points list to avoid being drawn again. Then we calculate the vector of
current__probability with the values of the row corresponding to dp; in dm. We
only select the data point dpq, so it is unnecessary to perform the multiplication
by column. Next, we normalize current_probability so that the sum of all the
elements is 1. This is the probability with which the next data point will be
drawn.

When the number of representatives is 2 (nr = 2), from the remaining
data points (dps, dps, dps, dps, dps, dp7) we randomly draw a new data point
with probabilities [0.05,0.10,0.14,0.24,0.24, 0.24], resulting in dps; being cho-
sen. The data point dps is removed from the set of data points and added to
the set of resulting data points. Then the probability vector is updated for the
next draw. Note that now dm filtered by dp; and dps is a matrix with two rows
and five columns. When we perform the multiplication by column we obtain
as current__probability the vector with values [0.20, 0.32,0.24, 0.60, 0.80]. Then,
we normalize the vector and we get [0.09,0.15,0.11,0.28,0.37]. The latter will
be the probability vector to choose the third data point. Since we only want
two data points, the selection process ends and we return the representatives
dp1 and dps to be labeled.

The data point dp; belongs to class #1 while the data point dps belongs
to class #2. One can observe that the initial set of data points will be
balanced since it has both classes representatives, so when we perform the

label propagation process, it favors a better classification.

4.3

Stratified Sampling with Probability selection strategy

The Stratified Sampling with Probability selection strategy (SSP) combines the
two previous strategies to randomly select data points within each stratum with
a given probability. In the SS strategy, the data points are randomly selected in
each stratum with equal probability, while SSP applies the probability strategy
inside the stratum.

The diagram in Figure 4.6 shows the main steps of the SSP algorithm.
Given the input parameters: the data points, the number of desired represen-
tatives, and the CM, we start the procedure with the initialization step of the
variables that will be used, such as the creation of the distance matrix between
any pair of data points using the Equation 4-2. From the CM, we obtain the
importance vector using the Equation 4-1, and it is ordered in descending or-
der. Also, as part of the initialization, we calculate the initial probability to
choose the first point. In this case, all data points have the same probability

of being selected. Also, we define the set of ids of the strata that will be ex-
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plored. In the next step, we randomly select a stratum that will be processed,
as explained in the following steps. To process a stratum, it is first removed
from the strata set to not be explored again in the next iterations. Based on
the selected strata’s id, a lower bound and an upper bound are calculated to
define the strata. Then the importance vector is filtered using the bounds to
obtain the data points corresponding to the strata. Next, we filter the proba-
bility vector to keep only the data points of the selected strata. Then a data
point is randomly chosen within the strata with the filtered probability. We
add the selected data point to the set of selected Dp. The next step focuses on
updating the probability vector. To do so, we firstly filter the distance matrix
by the selected data points, perform a multiplication per column to obtain
the probability with which the next data point will be drawn (within the next
strata drawn) and then normalize this probability. These last three steps are
carried out until nr data points are selected. Finally, the set selected Dp with
the selected data points is returned.

Figure 4.7 shows how the initial data points are selected in the same
dataset used in the two previous subsections. We initially calculate the distance
matrix from the CM. Furthermore, we calculate the importance of each data
point being [0.145, 0.161, 0.177, 0.161, 0.113, 0.129, 0.113] and we order this
vector decreasingly remaining as follows: 10 = [dps, dps, dpy, dp1, dpg, dps, dp7].
The initial probability of each data point is 1/7 = 0.14. We only want two
representatives, to divide the importance vector into two strata with ids 0
and 1 and create the empty set where the selected data points will be stored.
Both strata have the same probability of being drawn. We randomly draw
a stratum and obtain strata one. We update the vector of strata eliminating
strata one so that it will not be drawn again. We calculate the lower and upper
bound of strata one, which is [3,7], and select the data points dpy, dpg, dps
and dp; belonging to strata one. Randomly, we select a data point with the
probabilities [0.14, 0.14, 0.14, 0.14] and we obtained the data point dp;. We
add the data point dp; to the set of selected representatives and update the
probability vector as being dm filtered by dp;. Then, we normalize the vector
of probabilities and obtain [0.22, 0.17, 0.17, 0.22, 0.17, 0.04, 0].

In the next step, we chose a random stratum. For example, we obtained
stratum 0, which was the only one that remained to be explored. Then we
calculate the lower and upper bounds of stratum 0 with values [0,3). From
these values we filter the importance vector to obtain the data points of this
stratum (dps, dps, dpy) and the probability vector (0.17,0.17,0.22). Then we
randomly select the data point dps. We add the point dp,4 to the set of selected

representatives. Next, we filter dm by dp; and dp,, obtaining a matrix of two
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Figure 4.6: Stratified Sampling Probability diagram to define the initial labeled

data points.
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Figure 4.7: Example of SS-Probability strategy in a toy dataset.
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rows and seven columns. When performing the multiplication by columns, we
obtain as current_probability, the vector with values [0.60, 0.48, 0.32, 0, 0.32,
0.20, 0]. Then, we normalize the vector and obtain [0.31, 0.25, 0.17, 0, 0.17,
0.10, 0]. The latter will be the vector of probabilities to choose the third data
point if necessary. Finally, the selected representatives are returned dp; in
stratum one and dp, in stratum zero. The data point dp; belongs to class #2,
while the data point dp, belongs to class #1. In this example, one could observe
that the initial set of data points is balanced, favoring a better classification

in the label propagation method.
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5
Algorithms

In this chapter, we present an implementation of the proposed data point
selection strategies in Section 5.1. We show in Section 5.2 how to transform
the selected data points to be used in step 2 of the CRLP algorithm because
we made the label propagation using this step. Finally, in Section 5.3, we show

the procedure adopted to obtain the learning rate v parameter value.

5.1
Implementation of SS, P and SSP

Algorithm 2 Stratified Sampling strategy to define the initial labeled data
points

1: procedure SS(CM,nr)
2: importance < I(C'M) using Equation 4-1

3: sort__index < order(importance)

4: k < N/nr

5: 1+ 0

6: selected__index < ||

7 while 1 <nr —1 do

8: min__index < |i* k]

9: mazx_index < |(i+ 1) * k — 1]
10 pu < U(0,1)

11: p < pu* (max__index — min_index) + min__index
12: selected_index < selected__index U sort_index[p]
13: 14141

14: end while
15: return selected index

16: end procedure

The SS strategy steps are summarized in Algorithm 2, which receives
as input the parameters C'M and the desired number of representatives (nr).
Initially, in line 2, the importance of each data point is calculated through
Equation 4-1. The resulting importance vector (importance) is ordered in

decreasingly, as indicated in line 3. The ordered importance vector will be
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divided into nr intervals with £ elements. Each interval is defined by a min
value (line 8) and a max value (line 9). For each interval, a number between
zero and one is randomly chosen (line 10) and scaled between the min and max
values as shown on line 11. This result is added to the list selected index (line
12) and returned at the end of the algorithm (line 15). The selected data points

in selected index are then annotated.

Algorithm 3 Probability strategy to define the initial labeled data points

procedure PROBABILITY(CM, nr)
N < number of data points
dm;; =1— CM,;; (Equation 4-2)
points < list of size N

1:
2
3
4
5: current__probability < list of size N with 1/N values
6 selected__dp < |]

7 140

8 while i < nr do

9 current__point < random select a data point from points with

current__probability

10 selected dp.add(current_point)

11: points.remove(current__point)

12: selected__dm < dm|[selected__dp, points]

13: current__probability <— multiply by column selected dm

14: current__probability < current__probability/sum(current__probability)
15: 14—1+1

16: end while
17: return selected dp

18: end procedure

Algorithm 3 summarizes the steps of P strategy. It receives as input
parameters the CM and the desired number of representatives (nr). In the
beginning, all data points have the same probability of being selected (line 5).
This probability varies as more data points are selected. The first data point
is randomly selected with equal probability, while for the second data point,
the probability of being drawn is the distance from the first dp drawn to all
remaining data points (the row of the dp drawn in the dm), privileging the
most distant data points. When there are more than two data points selected,
the probability of selecting the next data point is the product between the
distances of the selected data points (rows of the distance matrix indexed by
the previous data points - line 12). For example, after having two data points

drawn, it must be far from the data points already drawn when choosing a
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third data point, which implies independence. For this purpose, we make the
product of the distances of the data points already drawn. This procedure is

performed from lines 7 to 14.

Algorithm 4 Stratified Sampling with Probability strategy to define the
initial labeled data points

1: procedure SS PROBABILITY(C M, nr)

2: N < number of data points

3 dm;; =1— CM,;; (Equation 4-2)

4: importance < I(C'M) using Equation 4-1

5: sort__index < order(importance)

6: k < N/nr

7 7+ 0

8: selected__index < ||

9: strata < list of size N

10: current__probability < list of size N with 1/N values

11: selected dp « ||

12: while 7 < nr do

13: i + random select a stratum from stratas

14: strata.remove(i)

15: min__index < [i * k|

16: mazx_index < |(i+ 1) x k — 1]

17: points <— sort_index[min__index : maz__index]

18: points__probabilities < current__probability[points|

19: points_probabilities < points__probabilities/sum(points_probabilities)
20: current__point < random select a data point from points with

points__probabilities

21: selected__dp.add(current__point)

22: selected__dm < dm][selected__dp,:]

23: current__probability <— multiply by row selected__dm
24: JJ+1

25: end while

26: return selected_dp

27: end procedure

The SSP strategy steps are summarized in Algorithm 4, receives as
input parameters the CM and the desired number of representatives (nr). This
algorithm is a hybrid of the Algorithm 3 (Probability) and the Algorithm 4
(SS). In this case, the data points’ importance vector is divided into strata

and select a data point for each stratum. Unlike SS, data points have different


DBD
PUC-Rio - Certificação Digital Nº 1621802/CA


PUC-RIo- CertificagaoDigital N° 1621802/CA

Chapter 5. Algorithms 36

probabilities of being drawn. In this variant of the algorithm, the strata are
selected randomly and not sequentially as in SS. For example, if we have ten
strata, one is randomly selected and removed from the strata list, so data
points from those strata will not be selected again (lines 13 and 14). Within
the stratum, a data point is randomly selected (line 20). The probability of
selecting this data point is reduced only to the data points that belong to the
selected stratum (The probability vector is obtained in the same way as in the
Probability strategy).

The next function shows how we obtain the set of data points to be
manually labeled. The Random selection selects data points randomly without
replacement and with a uniform probability density. The other algorithms are
detailed above.

function INITIALDATAPOINTS(CM, nr, strategy name)
data_points < 1 : nrow(CM)

if strategy name == random then

Yy = Random(data__points, nr)

else if strategy_name == stratified_sampling then
Yo = SS(CM,nr)

else if strategy name == probability then
Yo = P(CM,nr)

else
Yy = SSP(CM,nr)

end if

return Y

end function

5.2
Step 2 of CRLP algorithm

The second step of the CRLP algorithm is summarized in Algorithm 1,
lines 11 to 16. We obtain the Yj value using the previously defined function
InitialDataPoints. The selected data points label can be assigned by a domain
expert or come from a benchmark dataset. This vector is then transformed
into a matrix Yy. Yj is a n X m matrix where n represents the number of data

points in the dataset and m the number of classes. Yy[i, j] is define as:

o 1, if the i*" element was labeled in the j¥ class
Yoli, j] =
0, otherwise

The label propagation process can be executed to classify all data points
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in the dataset. The algorithm performs a label propagation process from the

CM and Y; to obtain a classification model.

5.3
Alpha tuning

We need to find the a value parameter of the CRLP algorithm. This
parameter is the learning rate and specifies the relative amount of information
kept from the neighbors and the initial information for each data point.
To find the « value, we carried out 30 simulations of the CRLP algorithm
with Uniform Random selection varying the alpha in {0.2,0.4,0.6,0.8} and
100 iterations. The number of representatives data points varied between
{nb.class,nb.class + 1, ...,5 * nb.class}.

Finally, we reported the Mean and Mad (Median Absolute Deviation)
Accuracy by Alpha. The o was selected with Max’s mean accuracy, and in
the cases where several the a values returned the same accuracy, we selected
the one closer to 0.5. In this case, o value is used to balance the propagation
algorithm learning rate and we selected the one closer to 0.5 to keep the balance
in the formula, and not bias one formula member. We consider our a chosen

to be conservative.

5.4
Active Learning

The scenario for our AL is Pool-based sampling. Figure 5.1 shows the flow
of activities of our AL process. We first create the CM, and then we apply
the selection strategies to form our initial set of selected data points. The
domain expert labels the initial set of data points, and finally, we get the set
of labeled data points. We used the CRLP algorithm as a learning model, and
the parameter o was the same one defined in Section 5.3. The AL loop was
executed five times, and in each iteration, the Query System selects nb.class
data points through our selection strategies and the random version. This new
set of data points is labeled and added to the labeled data points set, and
so on until five iterations are reached. We divided the AL approaches into
three algorithms. Firstly, we use the entropy to add data points with greater
uncertainty to the selection. Secondly, we update the CM with the oracle’s

information and finally merge both ideas.
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Figure 5.1: Flow diagram of Active Learning process.

5.4.1
Active Learning process with uncertainty

The first stage adds the most uncertain data point in each iteration to the set
of selected data points, in addition to the data points recommended by the
strategies. Following the same diagram as Figure 5.1, we add to the Query
System a strategy based on the calculation of uncertainty for each data point
of the pool and thus improve the previous results. We calculate the uncertainty
of each data point through entropy. We selected the data points closest to 0.5.

The Query System Random Sampling is the most common baseline used
to compare AL strategies. This strategy randomly selects data points from the
unlabeled pool (Ramirez-Loaiza et al., 2017). In our case, we use the Uniform
Random Uncertainty algorithm, which consists of initially making a random
selection of data points without considering the classes’ knowledge. Then, as
part of the QS, we calculate the point’s uncertainty obtained from the CRLP
algorithm. We select the most uncertain nb_ class data points to be labeled by
the oracle at each iteration.

In the case of the proposed selection strategies, we choose the nb_ class
data points through Probability, SS, or SS-Probability in each case. The data
points are selected as follows: the first data point is selected through entropy,
and the remaining nb__class-1 data points are complemented with the proposed

selection strategies as detailed in Algorithm 5.
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Algorithm 5 Active Learning with uncertainty

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:

procedure AL__ UNCERTAINTY(CM, nr, max__iter, strategy__name, c)
dp < {1,2,3,...,|CM|}
selected_dp <+ INITIALDATAPOINTS(CM,nr, strategy _name)
unlabeled__dp < dp — selected__dp

for i = 0 to max_iter do

if |unlabeled_dp| == 0 then
break
end if
y_pred_prob < step2_ CRLP(CM, selected__dp.labels, )
for j =0 to |dp| do
y_predlj] < index_of(maz(y_pred_prob[j]))
end for
dp__entropy « entropy(y_pred_ prob)
sorted__dp__entropy < sort(dp_entropy, decreasing = TRUFE)
unlabeled__sorted_ dp entropy — sorted_dp entropy —

selected_dp

if strategy name == random then
max__entropy__dp < unlabeled__sorted__dp__entropy[l : nr]
selected__dp < selected_dp U max__entropy dp

else
max__entropy__dp < unlabeled__sorted__dp__entropyl1]
selected_dp < selected_dp U max__entropy dp
current__dp — INITIALDATAPOINTS(CM,nr —

1, strategy__name) where not in selected__dp

selected__dp < selected_dp U current__dp
end if
unlabeled__dp < dp — selected_dp

end for

return selected dp

28: end procedure

5.4.2

Active Learning process with CM update

In the second stage, we add the step of updating the CM, as shown in

Figure 5.2. This step aims to reflect in the CM the dataset acquired knowledge

in each iteration through the oracle.

Let sdp be the set of data points selected to be labeled by the oracle
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Figure 5.2: Flow of Active Learning process with CM update.

and Y (sdp) be the class of each of these data points. The update of the CM is

carried out as follows:

1 if Y(sdp;) =Y (sdp;)

. (5-1)
0 otherwise

In other words, the probability obtained from the ensemble of each
selected data points pair is updated with a value of 0 if the pair of data points
belong to different classes and with a value of 1 if they both belong to the same
class as detailed in Algorithm 6. We hypothesize that in this way, the CM will
gradually eliminate possible noise. In this way, the CM is better reflecting the
knowledge acquired in each iteration of the loop.

It is essential to clarify that the CM’s update influences the selection
strategies and the model used to perform the classification. Algorithm 7 shows
how we merge the AL loop with the CM update.
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Algorithm 6 Update CM

1: procedure UrPDATE__CM(CM, selected__dp)
2 for n in selected_dp do

3 for m in selected_dp do

4 if n # m then

5: if n.label == m.label then
6 CM[n,m] <1

7 else

8 CMn,m] <0

9 end if

10: end if

11: end for
12: end for

13: end procedure

Algorithm 7 Active Learning with CM update

1. procedure AL__ CM(CM, nr, max__iter, strategy__name, c)
2 dp + {1,2,3,....|CM|}

3 selected_dp <~ INITIALDATAPOINTS(CM,nr, strategy_name)
4 UPDATE CM(CM, selected_ dp)
5: unlabeled__dp < dp — selected__dp
6 for ¢ = 0 to max_iter do

7

8

9

if |unlabeled_dp| == 0 then

break
end if
10: y_pred_prob < step2_ CRLP(CM, selected_dp.labels, c)
11: for j =0 to |dp| do
12: y_pred[j| < index_of(max(y_pred_prob[j]))
13: end for
14: current_dp < INITIALDATAPOINTS(CM,nr, strategy _name)
where not in selected_dp

15: selected__dp < selected_dp U current_ dp
16: UPDATE CM(CM, selected_ dp)
17: unlabeled__dp < dp — selected__dp

18: end for
19: return selected_ dp

20: end procedure
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5.4.3
Active Learning process with uncertainty and CM update

Finally, the third stage combines the previous ones as it considers both the
selection of the most uncertain data points and the CM’s updating. As part of
the QS in each iteration, we maintain the selection strategies and the selection
of the most uncertain data point. In addition, in each iteration, we update the
CM as shown in Algorithm 8.
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Algorithm 8 Active Learning with uncertainty and CM update

1: procedure AL UNCERTAINTY__CM(CM, nr,max__iter, strategy_name, c)
2: dp < {1,2,3,...,|CM|}

3: selected_dp < INITIALDATAPOINTS(CM,nr, strategy _name)

4: UPDATE _CM(CM, selected__dp)

5: unlabeled_dp <+ dp — selected_dp

6 for ¢ = 0 to max_ iter do

7 if |unlabeled_dp| == 0 then

8

9

break
: end if
10: y_pred_prob < step2_ CRLP(CM, selected__dp.labels, o)
11: for j =0 to |dp| do
12: y_pred[j] + index_of (max(y_pred_prob[j]))
13: end for
14: dp__entropy < entropy(y_pred_prob)
15: sorted__dp__entropy < sort(dp_entropy, decreasing = TRUFE)
16: unlabeled__sorted__dp entropy < sorted_dp entropy —
selected__dp
17: if strategy name == random then
18: max__entropy__dp < unlabeled__sorted__dp__entropy[l : nr]
19: selected__dp <— selected_dp U max__entropy dp
20: else
21: max__entropy dp < unlabeled_sorted_dp entropyll]
22: selected__dp < selected__dp U max__entropy_dp
23: current__dp — INITIALDATAPOINTS(CM,nr —
1, strategy__name) where not in selected__dp
24: selected_dp < selected_dp U current_dp
25: end if
26: UPDATE _CM(CM, selected__dp)
27: unlabeled__dp < dp — selected__dp

28: end for
20: return selected dp
30: end procedure
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Experimental study

This chapter describes how we evaluate our proposal, present the results
obtained, and discuss their implications to the LP and AL areas. In Section 6.1
we present the datasets used in our experiments, and a general explanation
about three executed experiments and used metrics(subsection 6.2). First, to
know if the real distribution of the classes in the selection is maintained, we
compared in Section 6.3 the results of Selection strategies with the Random
selection. Second, in Section 6.4, we compare the random selection and the
selection strategies with the CRLP algorithm. Finally, Section 6.5 applies the

selection strategies in the area of Active Learning.

6.1
Benchmark

In our experiments, we used 15 well-known datasets, 14 are used in (Yu
and Kim, 2018), and the 15th is the MNIST test dataset (Chollet et al.,
2015). Most of them are available in the UCI Machine Learning Repository
(Lichman et al., 2013), such as Wine, Seeds, Congressional Voting, Vertebral,
Breast Cancer 1 and 2, Synthetic control chart, Balance Scale, Urban Land
Cover, and Segmentation Image. The remaining datasets can be found in the
following sources: Leukemia in (Boulesteix et al., 2018), Lymphoma in (Chung
et al., 2019), Armstrong in (Armstrong et al., 2002), Chen 2002 in (Chen
et al., 2002). Table 6.1 gives details of these datasets. Only Congressional and
Balance Scale datasets have categorical attributes, and the remaining of them
have continuous attributes. Notice that, in the majority of the datasets, the
classes are unbalanced. The visual representation of CM for 14/15 datasets is

presented in Appendix A.7.

6.2
Procedure

Three experiments were carried out. We run 100 simulations in each experi-
ment. The first experiment compared if Uniform Random selection with the
Selection strategies (with and without replacement) maintained the real distri-

bution of the classes in the selection. The second experiment was to compare
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Table 6.1: Overview of datasets.

Dataset Nb.Instances Nb.Attribute Nb.Class Balanced

1 Leukemia 38 3051 2 No
2 Lymphoma 62 4026 3 No
3 Armstrong 72 2194 3 No
4  Wine 178 13 3 No
5 Chen 2002 179 85 2 No
6 Seeds 210 7 3 Yes
7 Congressional 232 16 2 No
& Vertebral 310 6 3 No
9 Breast Cancer 1 569 30 2 No
10  Synthetic 600 60 6 Yes
11 Balance Scale 625 4 3 No
12  Urban 675 147 9 No
13 Breast Cancer 2 683 9 2 No
14 Segmentation 2310 19 7 Yes
15  Mnist Test 10000 784 10 No

the CRLP algorithm’s accuracy with the different selection strategies and the
LP process (with and without replacement). The third experiment was to com-
pare the accuracy of the CRLP algorithm in the AL process.

In all of the experiments, a simulation process was carried out varying
the desired number of representatives. In the experiment with replacement,
the number of selected representatives varies continuously between nb.class
and 5*nb.class in each dataset {nb.class,nb.class+1,...,5xnb.class} while in
the case without replacement goes from {nb.class, 2xnb.class, ..., 5*nb.class}.
We have a premise that we do not know the class of data points a priori.
Such fact differs from the paper that present the CRLP algorithm Yu and
Kim (2018). In the experiment with replacement, the same data point for a
different number of representants can be drawn more than once while in the
case without replacement, a multiple of the number of classes is always chosen
as the number of representatives to have the same number of data points per
class. However, as the selection is blind, we cannot guarantee it. In this case,
only the strata that have not yet been drawn are sampled, thus maintaining
the previously selected data points.

The terms number of desired representatives, nb.class, number of labeled
observations and number of queried samples refer to the number of selected
data points.

The metrics to assess the first experiment were Jensen-Shannon (JS)
Divergence, reporting Mean and Standard Deviation (Sd), while in the second

and third experiments, we also used Mean and Sd to report the accuracy
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results.

The JS Divergence (Lin, 1991) measure the similarity between two mass
probability functions, which its square root can be considered a distance metric
between probability mass functions. Also, the smaller the divergence value,
the better is the result. The mass probability function of the selected data
point’s classes generated by the proposed selection strategies should be similar
to the mass probability function of the classes in the original dataset. The

JS-Divergence is given by Equation 6-1:

P+Q1 H®[P] H®I[Q)
2 }_ 2 2 (6-1)

where P and () are mass probability functions, and H®) (Shannon and Weaver,

pIPIQ) = H |
1963) is the Shannon entropy, which is given by:

H®[P] = - ijln(pj)-

We implement the selection strategies and the CRLP algorithm in the
language Pyhton (Van Rossum and Drake, 2009). To calculate the accuracy in
each simulation we use the metric implemented in the scikit-learn package
(Pedregosa et al., 2011). We calculate the Shannon Jensen divergence by
applying the Jennsen Shannon distance’s square root defined in the scipy
package (Virtanen et al., 2020). We execute the experiments on a computer
with an Intel Core i7 processor, 3.30 GHz, and 64 Gb of RAM.

6.3
Selection strategies experiment

In this section, we present the first experiment that compares the Uniform
Random selection with the proposed selection strategies (with and without
replacement). Here, we look to the aspect that the selected set of data points
maintains the original dataset’s classes distribution. The subsection 6.3.1
presents the results obtained with the Selection strategies with replacement
and the subsection 6.3.2 presents the results obtained with the Selection

strategies without replacement.

6.3.1
Selection strategies with replacement

Figure 6.1 and Figure 6.2 shows the results. In most of the datasets, the
Uniform Random strategy is observed in red with a higher mean divergence
and a higher standard deviation. This means that it would not choose Uniform

Random, but any other proposed selection methods in a general way. Further-
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more, we observe that most of the times the rest of the selection algorithms
have similar mean divergence values with a tendency to be less between the SS
and SS-Probability methods. This suggests a positive effect of the SS method.
In many situations, the SS-Probability has a simple gain over the SS method.
On average, these selection strategies respect the original classes’ distribution
more than the Uniform Random selection in red. Based on the observations,
Probability, SS, and SS-Probability favor a more appropriate selection. How-
ever, this is not the case for the Lymphoma and Balance Scale datasets.

In the case of the Lymphoma dataset, which has 62 data points divided
into three classes, initially the mean divergence of Probability, SS and SS-
Probability remain smaller than in the Random method (Figure 6.1). However,
from representative number six, it begins to increase, having a critical peak
with 13 representative data points in the SS and SS-Probability methods.
The peak may be due to one missing class representative in the selection. For
example, in the case of SS, dividing the ordered importance vector by 13,
the first nine strata correspond to data points only of class #1, strata ten and
eleven only have data points of class #3, and the data points from strata twelve
and thirteen, mostly belong to class #2, but have one representative from class
#1 and another from class #3. In this case, elements of class #2 may never
be sampled, favoring these high divergence values. However, the Probability
method performs much better than Uniform Random, SS, and SS-Probability.
In general, it obtains lower values of mean divergence and standard deviation.
In the case of the Lymphoma dataset, the strata affected the performance of
the selection strategy.

The Balance Scale dataset is naturally unbalanced. Of the 625 data points
divided into three classes, only 49 belong to class #1, 288 belong to class #2,
and 288 belong to class #3. The number of representatives seven has the
highest peak in divergence (Figure 6.1). When dividing the ordered vector
of importance into seven strata, the 49 data points of class #1 were diluted
between these strata, but in less quantity than the remaining data points. So it
may be that the first class is never drawn, negatively impacting the divergence
in the SS and SS-Probability methods. In the Probability strategy, the mean

divergence is less than the Uniform Random in 1415 representatives.

6.3.2
Selection strategies without replacement

Figure 6.3 and Figure 6.4 show the results. In general, this selection ap-
proach without replacement and the selection of multiples of the nb.class gen-

erates smooth curves. Furthermore, in most datasets, the mean JS divergence
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replacement when applied to 15 datasets.
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from the P, SS, and SSP strategies tend to be less than the mean divergence
from the Uniform Random strategy. In contrast to this behavior, the standard
deviation of the selection strategies in this approach tends to be less than the
Uniform Random method’s standard deviation.

In summary, these results and visualizations verify that, on average, the
P, SS, and SSP strategies generate the mass probability functions more similar
to the real mass probability function of the classes in the hole dataset when
compared to the Uniform Random selection is more suitable than random

selection. The analysis described above helps us to answer RQ1.

6.4
Label Propagation experiment

We run a second experiment to compare the CRLP algorithm’s accuracy
considering the different selection strategies with and without replacement.
In Table 6.2 it is possible to see the a value for each dataset obtained through
the procedure described in Section 5.3. Appendix A.1 presents more detailed
information on « selection. These « values will be used in this experiment for

all selection strategies.

Table 6.2: Hyperparameters for the CRLP blind algorithms using Random,
Stratified Sampling, Probability and Stratified Sampling with Probability as
selected initial data points.

(Random and Selection strategies)

Dataset Blind CRLP
1 Leukemia a=04
2 Lymphoma a=04
3 Armstrong a=0.2
4 Wine a=0.2
5 Chen 2002 a=0.2
6 Seeds a=0.2
7 Congressional a=04
8 Vertebral a=0.4
9 Breast Cancer 1 a=04
10 Synthetic a=0.2
11 Balance Scale a=0.2
12 Urban a=0.2
13 Breast Cancer 2 a=04
14 Segmentation a=0.2
15 Mnist Test a=04
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Figure 6.5: Classification mean accuracy curves for the Blind Random CRLP,
Blind Probability CRLP, Blind Stratified Sample CRLP and Blind Stratified
Sample Probability algorithms with replacement in 15 datasets.

6.4.1
Selection strategies applied to CRLP algorithm with replacement

This subsection presents the results obtained with the Selection strategies
applied to the CRLP algorithm with replacement. Figure 6.5 and Figure 6.6
show the results.

It is observed that, on average, higher accuracy is obtained through the

P and SSP selection strategies rather than making the selection randomly.
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Figure 6.6: Classification standard deviation accuracy curves for the Blind
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and Blind Stratified Sample Probability algorithms with replacement in 15
datasets.
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This example indicates that the P and SSP strategies are more accurate
than the Uniform Random selection strategy in most datasets. A minor
standard deviation shows that our selection strategies are consistent in the
100 simulations. Again, SS and SSP do not perform well on Lymphoma and
Balance Scale datasets (Figure 6.5), but it was expected due to the selection
problems explained in the first experiment.

Appendix A.2 show the accuracy dispersion over 100 simulations. On
the mean the selection strategies gets a higher accuracy value with an equal

or better dispersion on most of the datasets.

6.4.2
Selection strategies and CRLP algorithm without replacement

This subsection presents the results obtained with the Selection strategies
applied to the CRLP algorithm without replacement. Figure 6.7 and Figure 6.8
show the obtained results.

The curves are smoother than in the experiment with replacement. We
can see that, on average, label propagation using Uniform Random selection
(red color) generates lower accuracy values and higher standard deviation than
our strategies. In the Lymphoma and Balance Scale datasets, the CRLP with
Random selection has better performance than SS_CRLP (light blue) and
SS-Probability  CRLP (dark blue); but the Probability CRLP (orange color)
obtained higher values of accuracy. Our strategies show consistency with the
selection since on average, the standard deviation is less than the Uniform
Random standard deviation. The results demonstrate an evident impact on
selecting the initial data points when applying the CRLP algorithm.

Appendix A.3 shows the accuracy dispersion over all simulations. On the
mean, the proposed selection strategies get a higher accuracy value on most
of the datasets. As the number of representatives increases, the dispersion in
the Uniform Random strategy is greater than the dispersion in the selection
strategies. SS-Probability appears to be a good candidate as an initial data

point selection algorithm. These results help us to answer our RQ2.

6.4.3
Summary of LP experiment

Figure 6.9 presents a summary of the second experiment performed. For
each dataset, all the simulations carried out are shown without distinguishing
between the number of representatives. Results show the SSP dominates the
other selection procedures, also presenting smaller dispersion.

By experimentation, we know that we obtain a greater accuracy with a
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Figure 6.7: Classification mean accuracy curves for the Blind Random CRLP,
Blind Probability CRLP, Blind Stratified Sample CRLP and Blind Stratified
Sample Probability algorithms without replacement in 15 datasets.
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Blind Stratified Sample Probability algorithms without replacement in 15
datasets.
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smaller dispersion. So if we execute the algorithm only once, we will have less
risk of selecting non-representative data points. In practice, when we have
higher accuracy and a smaller dispersion, we are reducing the risk of the
selection process. Therefore, our strategies make the data point selection for

the labeling process more robust.

6.5
Active Learning experiment

In our third experiment, the idea is to apply the selection strategies in the
area of Active Learning. The previous LP without replacement experiment
consists of evaluating the proposed selection strategies and comparing them
with Uniform Random selection, which is currently the traditional way. So this

can be seen as an AL process.

6.5.1
Active Learning process with Uncertainty

Figures 6.10, 6.11 and Appendix A.4 show the obtained results. The
Query System Random Sampling does not use uncertainty. Therefore, we leave
the selection random for comparison purposes only. According to the observed
results, the behavior of the strategies is maintained in most of the datasets.
When adding uncertainty behavior to the traditional random selection, we
observed that the performance worsened in most of the datasets. In other
words, we had low average accuracy and high standard deviation, worse than
the Uniform Random selection.

The SS-Probability strategy affects both the LP and AL processes.
Therefore, an important question is: did it bring any gain to add uncertainty
in the selection in terms of performance? Figures 6.12 and 6.13 show a
comparison between the experiment of label propagation without replacement
(Random and SS-Probability) and active learning process with uncertainty
(Random_ with_ Uncertainty and SS-Probability with_ Uncertainty). In most
datasets, there seems to be no positive impact of adding data point selection

based on uncertainty. Not even in the traditional random method.

6.5.2

Active Learning process with CM update

Figures 6.14, 6.15 and Appendix A.5 show the obtained results. Given the
observed results, the differences between the strategies remain similar to the
previous experiment. Updating the CM intuitively seems to be the right
decision. Only it did not bring benefits.
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Figure 6.10: Classification mean accuracy curves for the Random, Random
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algorithms for the active learning process with uncertainty in 15 datasets.
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Figure 6.15: Classification standard deviation accuracy curves for the Random,
Random Uncertainty, Probability, Stratified Sample and Stratified Sample
Probability algorithms for the active learning process with CM update in 15
datasets.
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Could it be that updating the CM brings any improvement in the SS-
Probability strategy in terms of performance? Figures 6.16 and 6.17 show
a comparison between the label propagation experiment without replace-
ment (Random and SS-Probability) and active learning process with CM up-
date (Random_ with_ CM__update and SS-Probability with_ CM_ update).
In most of the datasets both SS-Probability with CM update strategy was
similar to the SS-Probability strategy. So everything indicates that it had a
small impact on mean accuracy. Therefore, we would not advise this variant

since it is necessary to recalculate the importance vector each time.

6.5.3
Active Learning process with Uncertainty and CM update
Figures 6.18, 6.19 and Appendix A.6 show the obtained results. As in the
previous results, the strategies maintain the performance in most of the
datasets.

Figures 6.20 and 6.21 show a comparison between two experiments: label
propagation without replacement and active learning process with CM update.
In most of the datasets, there seems to be no positive impact of updating the

CM with uncertainties, not even in the traditional Random strategy.
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Figure 6.16: Classification mean accuracy curves for the Random, Random
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bility with CM update algorithms for the label propagation without replace-
ment and active learning process with CM update in 15 datasets.
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Figure 6.17: Classification standard deviation accuracy curves for the Random,
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Probability with CM update algorithms for the label propagation without
replacement and active learning process with CM update in 15 datasets.
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Figure 6.18: Classification mean accuracy curves for the Random, Random
Uncertainty, Probability, Stratified Sample and Stratified Sample Probability
algorithms for the active learning process with uncertainty and CM update in
15 datasets.
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Figure 6.20: Classification mean accuracy curves for the Random, Random
with Uncertainty and CM update, Stratified Sample Probability and Stratified
Sample Probability with Uncertainty and CM update algorithms for the label
propagation without replacement and active learning process with uncertainty
and CM update in 15 datasets.
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Figure 6.21: Classification standard deviation accuracy curves for the Random,
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the label propagation without replacement and active learning process with
uncertainty and CM update in 15 datasets.
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Figure 6.22: Classification accuracy curves of the 100 simulations for the
Random, Random Uncertainty, Probability, Stratified Sample and Stratified
Sample Probability algorithms for the active learning process by dataset.

6.5.4

Summary of Active Learning experiment

Figure 6.22 presents a summary of the third experiment performed and Label
Propagation without replacement. The combination without uncertainty and
without CM actualization is the LP without replacement. This experiment has

three stages. The first stage is the combination with uncertainty and without
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CM update. The second stage is the combination without uncertainty and with
CM update, and the third stage is the combination with uncertainty and CM
update.

For each dataset, all the simulations carried out are shown without
distinguishing between the number of representatives. In general, the SS-
Probability strategy obtained a mean accuracy greater than or equal to that

obtained by Random and Random Uncertainty but with less dispersion.

6.6
Discussion

The experiments carried out showed that the use of the selection strategies
applied in the context of a real problem is promising. In our experimental
condition, especially in the AL, we cannot use a predictive method because we
do not have enough observations. Since we work with a few observations, we
use LP methods with the minimum number of labeled data points.

The most uncertain data point in the propagation is not the best
choice. This makes sense because those data points with the most significant
uncertainty are in different groups’ border regions. A solution would be not to
propagate with these data points because they cause noise and only add them
to the set of labeled data points. Alternatively, perhaps, have a parameter to
regulate the data point label’s propagation speed for its neighbors. In this case,
it would be a parameter for each data point.

The proposed selection strategy SS-Probability improves in both cases
(AL uncertainty and AL with CM update).

The proposed heuristics are used to select the initial set of data points
for the LP algorithms. If we use these AL strategies, they provide a better
result than just using the Uncertainty-based Query System. At least when we
use LP algorithms to perform the classification. As we observe in the results of
experiment three, propagating the label of uncertain data points brings more
significant confusion, which is reflected in low average accuracy. In summary,

we can think that the proposed strategies can be applied in other contexts.
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7
Considerations about selection strategies

During the research, questions emerged about the use of the co-association
matrix (Section 7.1) due to its computational cost. Furthermore, we made a
comparison between the data points selected by SSP and the data points of
an optimal solution to discover if SSP achieves an accuracy comparable to the

optimal solution (Section 7.2).

7.1
Similarity Matrix vs Co-association Matrix

A key question in our research is what kind of matrix of relationships between
data points we can use? Our proposed selection strategies are based on
obtaining the CM. We know that it is a computationally expensive, and time-
consuming process. So it is entirely feasible to ask why not use a cheaper matrix
such as a Similarity Matrix (SM)?

One way to build the SM would be to calculate the distance between
every pair of data points (dist; ;). We normalize the values between 0 and 1 (we
divide each value by the maximum value of the distance matrix). Depending
on the type of variables, we use Euclidean distance for continuous variables
and Hamming distance for categorical variables. Then, the SM is defined as in

the equation 7-1.

SM;; =1 —dist; (7-1)
where (i, j) are two data points in a dataset.

The SM showed in Figure 1.1 was built using the above procedure.
Thinking about how our selection strategies work, the importance vector will
not be discriminating when we use the SM. Therefore, we will not have well-
defined regions of importance, which will affect the selection. Figure 7.1 shows
the behavior when applied to an LP process. Once again, 100 simulations of the
LP were carried out without replacement for each number of representatives.
We use the SM both for selection strategies and for propagation. It is not easy
to select the best strategy based on the average accuracy value because the

curves are very mixed and with peaks. This is not the case when we use the
CM (Figures 6.7 and 6.8).
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the SM in 14 datasets.
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For this reason, building the CM indeed requires computational effort
and memory space, but the performance is much better, which reinforces Yu
and Kim speech on the use of CM in (Yu and Kim, 2018).

7.2
Optimal solution analysis

The main idea of this analysis is to compare the solution proposed by the SS-
Probability strategy and Uniform Random strategy with one optimal solution
for the same dataset. In this context, we understand that the data points
selection set that once labeled, will be used by the CRLP algorithm. By the
nature of LP algorithms, the propagation will have better results if there is a
balance between the initial data point set classes. Based on this premise, the
optimal solutions are made up of sets of data points with balanced classes.

The algorithm implemented to find the optimal solution chooses com-
binations of data points from a list containing all the data points. For each
combination, we propagate the label using step two of the CRLP algorithm.
For example, suppose we have a dataset with three classes. We want to select
nb.class, 2 * nb.class, 3 * nb.class, 4 * nb.class and 5 * nb.class data points
without replacement.

In the first iteration of the algorithm, we obtain all the combinations of
three data points, being a data point of each class to maintain the premise
described above. Then, for each combination, we carry out a label propagation
process. Of all the combinations of three data points, we save the one with
the highest accuracy value. In the second iteration, we will select six data
points but keeping the best solution with three data points obtained in the
first iteration. We build combinations with only three data points without
considering the data points of the best solution so far. Then we form the
combinations of six data points by joining the combinations of three data points
plus the data points of the previous best solution. Next, for each combination
of six data points, we carry out a label propagation process, and the optimal
six data point solution is the one with the highest accuracy value. In the third
iteration, we obtain all the possible combinations of three data points again
without counting the six data points that were already selected. Then we add
to these combinations the optimal solution of six data points and find the best
solution. Successively carry out the same procedure for twelve and fifteen data
points.

Finally, when this search process is over, we have one optimal solution for
3,6,9,12, and 15 data points. Note that the optimal solution for 15 data points

contains the optimal solution for 12 data points, which contains the optimal
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solution for nine data points, and so on until we reach the optimal solution of
three data points.

With the algorithm described above, we generate a possible optimal
solution. We select the first subset of data points that generates maximum
accuracy. However, note that there can be multiple subsets of data points that
generate the same accuracy value.

Generating all combinations of nb.class data points depending on the
number of data points is computationally expensive. For this reason, we
selected the Leukemia, Lymphoma, and Armstrong datasets as they have few

data points.

Leukemia Lymphoma
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Figure 7.2: Classification mean accuracy curves for the Optimal, Random and
Stratified Sample Probability algorithms without replacement when applied to
Leukemia, Lymphoma and Armstrong datasets.

Figure 7.2 shows the Uniform Random and SS-Probability strategies’
mean accuracy. In addition to the optimal solution represented in black. In
general, we observe that SSP obtains a higher mean accuracy than that
obtained by Uniform Random. In this sense, the mean accuracy of the solutions
obtained by the SSP is closer to the optimal solution. Table 7.1 shows the mean
accuracy and standard deviation by the number of labeled data points for the
best solution found, SSP and Uniform Random strategies in the Leukemia,
Lymphoma and Armstrong datasets. The columns %I__SSP and %I_Random
represent the average frequency of the intersection between the solutions
obtained (SSP and Random Uniform strategies) and the optimal solution.

For example, in the 100 simulations, we have on average 7.5% intersection

between the data points selected through the Uniform Random selection
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strategy and a possible best solution obtained by selecting 2 data points in
the Leukemia dataset. In Leukemia and Armstrong datasets, the SSP obtained
the highest percentage of the intersection with the values 32.1% and 21.7%,
respectively. In the case of Lymphoma, the Uniform Random obtained the
highest percentage of the intersection with a value of 24.6%. However, despite
having a higher intersection percentage, the SSP obtained a higher accuracy
value (96.8%). One hypothesis is that the SSP selects better-distributed data
points in the domain. Another possibility is that there are other optimal
solutions.

By construction, the optimal solution guarantees to select data points
while maintaining the balance of the dataset classes, while our strategies do not
guarantee to find a representative of each class. For example, for the Leukemia
dataset, in none of the simulations performed (SSP and the Uniform Random
strategies) we obtained a set of data points with balanced classes. In the case
of Lymphoma with three representatives and Uniform Random strategy, in
9% of the simulations the selected data points were balanced. For the rest of
the representatives, it was unbalanced. In the case of the Armstrong dataset,
we observe a greater balance between the classes. For example, with three

representatives, the Uniform Random strategy obtained a balance of 18% while
SSP obtained 47%.
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Table 7.1: Mean accuracy and Standard Deviation by number of labeled data
points for best solution found, SSP and Uniform Random strategies.

Dataset nb repr Optimal SSP  Random %I SSP %I Random

9 0.974 0.807 0.748 8.0 7.5
(£0) (£0.102)  (£0.179)
A 0.974 0.893 0.842 13.5 12.2
(£0) (£0.073)  (£0.1)
Leukemia 6 1.000 0.888 0.863 16.5 17.0
(£0) (40.084) (£0.096)
3 1.000 0.927  0.903 24.6 22.0
(40) (£0.049)  (40.08)
10 1.000 0.939 0.932 32.1 26.0
(£0) (£0.039) (£0.06)
3 0.984 0.825 0.776 4.3 6.3
(+0) (£0.026)  (+0.135)
6 1.000 0.955 0.880 5.2 10.2
(£0) (£0.059)  (£0.091)
Lymphoma 9 1.000 0.958 0.907 9.0 14.2
(£0) (£0.055)  (40.081)
12 1.000 0.952  0.931 14.9 19.7
(£0) (£0.057) (£0.075)
15 1.000 0.968 0.952 21.1 24.6
(£0) (£0.043)  (£0.065)
3 0.889 0.73  0.603 3.7 5.3
(£0) (£0.106)  (£0.165)
6 0.903 0.816 0.736 8.3 9.3
(£0) (£0.051)  (+0.11)
0.917 0.829 0.793 9.8 13.2
Armstrong 9
(£0) (£0.043)  (40.064)
19 0.931 0.839 0.815 17.3 16.6
(£0) (£0.041)  (£0.064)
15 0.944 0.855 0.828 21.7 21.2

(£0) (£0.04) (£0.056)
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Conclusion

This chapter presents the main contributions of this research and outlines

directions for future work.

8.1
Contributions

This research introduced three strategies for data point selection based on
Stratified and Non-uniform Sampling from a Probability mass function ex-
tracted from the Co-association Matrix. Our experiments in 15 datasets shows
the effectiveness of the proposed selection methods in a semi-supervised con-
text. The proposed selection strategies opens the door to be also used in Active
Learning (AL) algorithms due to the data points selection step in the AL loop.
Our three research questions were answered. Unlike Yu and Kim (Yu and Kim,
2018) who obtains the average results through simulations of 100 times each
set of data points with label knowledge, we proposed blind strategies.

However, we still have issues to be addressed in the future. For example,
taking into account the limitation of the SS strategy, we can still improve
the calculation of the importance indicator. In addition, another future line
could be to improve the control of the initial class balance, regardless of the
distribution of the real classes in the dataset. As explained in the LP articles,
classes must be balanced in order to obtain best results. This is not a simple
task because our process is totally blind, we only trust on the quality of the
co-association matrix.

The main limitation of our work is the previous construction of the CM.
We know that it is a computationally expensive, time consuming process and
depending on the size of the dataset it consumes a considerable portion of
memory. However, in certain scenarios they can be addressed by methods
such as the one presented in (Huang et al., 2019). We have observed that
the information that is hidden in CM is important, and reinforces the Yu and
Kim speech on the use of CM in (Yu and Kim, 2018).
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8.2
Future works

For future research, we list some suggestions that may improve our work:

— Explore the use of selection strategies in large scale situations.

— Explore the use of CM in different contexts and not only AL and LP.

The CM contains valuable information about data.

— Compare the proposed selection strategies within AL framework with
other query system techniques. In this work we limited to uncertainty

query system.
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90

Table A.1: Median accuracy with Median Absolute Deviation by k for Blind

Uniform Random CRLP algorithm.

«@
Dataset 0.2 0.4 0.6 0.8
) 0.92 0.92 092 0.92
Leukemia
(£0.04)  (£0.04)  (£0.04)  (£0.04)
0.85 0.85 0.84 0.84
Lymphoma
(£0.08)  (£0.07)  (£0.04)  (£0.02)
0.8 078 076 0.75
Armstrong
(£0.06)  (£0.07)  (£0.09)  (£0.04)
_ 0.91 09 0.87 0.72
Wine
(£0.05)  (40.06)  (£0.08)  (+0.11)
0.84 082 0.72 0.59
Chen
(£0.07)  (£0.1) (£0.14)  (40.01)
0.86 0.84 0.78 0.67
Seeds
(£0.05)  (40.07)  (£0.11)  (40.09)
. 0.87 0.87 087 0.87
Congressional
(£0.01)  (40.01)  (£0.01)  (+0.01)
0.61 0.61 061 0.57
Vertebral
(£0.07)  (40.06)  (£0.07)  (40.07)
0.91 0.92 092 0.92
Breast Cancer 1
(£0.01)  (£0.01)  (£0.01)  (40.01)
_ 0.71 0.69 067 0.6
Synthetic
(£0.09)  (£0.11)  (£0.07)  (£0.09)
0.54 0.53 0.5 0.47
Balance Scale
(£0.05)  (£0.03)  (£0.03)  (&0)
0.61 0.59 0.55 0.51
Urban
(£0.08)  (£0.08)  (£0.06)  (+0.05)
0.95 0.95 095 0.94
Breast Cancer 2
(£0.01)  (£0.01)  (£0.01)  (+0.01)
) 0.65 0.64 0.62 0.56
Segmentation
(£0.09)  (+£0.08)  (4+0.08)  (40.07)
) 0.62 0.62 058 0.51
Mnist  Test
(£0.07)  (£0.06)  (£0.06)  (40.06)
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A.2
Appendix 2

In this appendix, we show the accuracy dispersion over 100 simulations in

the selection strategies applied to LP algorithm with replacement experiment.
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Figure A.1: Classification accuracy curves of the 100 simualtions for the Blind
Random CRLP, Blind Probability CRLP, Blind Stratified Sample CRLP
and Blind Stratified Sample Probability algorithms with replacement in 15
datasets.
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A3
Appendix 3

In this appendix, we show the accuracy dispersion over 100 simulations
in the selection strategies applied to LP algorithm without replacement exper-

iment.
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Figure A.3: Classification accuracy curves of the 100 simulations for the Blind
Random CRLP, Blind Probability CRLP, Blind Stratified Sample CRLP and
Blind Stratified Sample Probability algorithms without replacement in 15
datasets.
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A.4
Appendix 4

In this appendix, we show the accuracy dispersion over 100 simulations

in the selection strategies applied to AL with uncertainty experiment.
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Figure A.4: Classification accuracy curves of the 100 simulations for the
Random,Random Uncertainty, Probability, Stratified Sample and Stratified
Sample Probability algorithms for the active learning process with uncertainty
in 15 datasets.
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A5
Appendix 5

In this appendix, we show the accuracy dispersion over 100 simulations

in the selection strategies applied to AL with CM update experiment.
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Figure A.5: Classification accuracy curves of the 100 simulations for the
Random, Random Uncertainty, Probability, Stratified Sample and Stratified
Sample Probability algorithms for the active learning process with CM update
in 15 datasets.
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A.6
Appendix 6

In this appendix, we show the accuracy dispersion over 100 simulations
in the selection strategies applied to AL with uncertainty and CM update

experiment.
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Figure A.6: Classification accuracy curves of the 100 simulations for the
Random,Random Uncertainty, Probability, Stratified Sample and Stratified
Sample Probability algorithms for the active learning process with uncertainty
and CM update in 15 datasets.
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In this appendix, we show the CM for the 14 datasets.
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Figure A.7: Co-association matrix of Leukemia, Lymphoma, Armstrong, Wine,
Chen, Seeds, Congressional, Vertebral and Breast Cancer 1 datasets.


DBD
PUC-Rio - Certificação Digital Nº 1621802/CA


PUC-RIo- CertificagaoDigital N° 1621802/CA

Appendix A. Appendices

Synthetic - CM

Data point
1 81 161 241 321 401 481 561
|
Il
|
I

1

213

int

Data poi

598

1 61 121 181 241 301 361 421 481 541 601 661

61
121
181
= 241
£
g 301
361
2
o 421

Data point
241 301 36

661

276 |

98

Balance_Scale - CM

Segmentation - CM

Data point
1 301 601 901 1201 1501 1801 2101
- ]
-
— '~ H:I"
-V " -

Figure A.8: Co-association matrix of Synthetic, Balance Scale, Urban, Breast

Cancer 2 and Segmentation datasets.
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